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Abstract
Chains of quantum spins with open ends and isotropic Heisenberg exchange
are studied. By diagonalizing the Hamiltonian for chains of finite length N and
obtaining all the energy eigenvalues, the magnetic susceptibility χ , the specific
heat Cv , and the partition function Z can be calculated exactly for these chains.
The high-temperature series expansions of these are then evaluated. For χ and
Cv it is found that the terms in the series consist of three parts. One is the
normal high-T series already known in great detail for the N → ∞ ring (chain
with periodic boundary conditions). The other two consist of a ‘surface’ term
and a correction term of order (1/T )N . The surface term is found as a series
up to and including (1/T )8 for spin S = 1/2 and 1. Simple Padé approximant
formulae are given to extend the range of validity below T = 1.

1. Introduction and three atom chain

Quantum spin chains with isotropic Heisenberg exchange have been studied for many years.
Most of this work deals with rings of atoms, i.e. chains with periodic boundary conditions.
High-temperature series expansions were developed early on by Baker et al [1], and Domb
and others [2, 3]. A summary of much of the early work can be found in Rushbridge et al
[4]. For the spin S = 1

2 chains the Bethe ansatz has enabled many properties to be calculated
more directly from integral equations. In combination with analytic formulae from conformal
field theory, valid at low T , extremely accurate and detailed numerical results are known [5, 6].
Using these the high-temperature series expansions have been calculated to very large numbers
of terms (∼50) in recent years [7, 8]. Of course, the Bethe ansatz is not directly applicable to
chains with S > 1

2 , and direct calculation of the high-temperature series remains an important
way to study these systems.

We shall refer to these results for closed chains with periodic boundary conditions in the
limit that the number of atoms N → ∞ as bulk results. In this paper chains with open ends
are studied. These have not been studied in detail for spin- 1

2 by Bethe ansatz methods, which
in any case would not be relevant for S > 1

2 .
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To illustrate the method first consider a chain of three spin- 1
2 atoms with Hamiltonian

H = J (s1 · s2 + s2 · s3). (1)

Positive J indicates antiferromagnetic coupling and negative J ferromagnetic. The total
z-component of spin, Sz

T = sz
1 + sz

2 + sz
3, is a good quantum number.

The total number of states is (2S + 1)N , in this case 8, with eigenvalues E j and
corresponding values of Sz

T denoted by m j . These are shown in the table:

m j E j

± 1
2 −1, 0, 1

2

± 3
2

1
2

We define

Zn =
∑

j

(E j)
ne−βE j ,

where β ≡ 1
T and Boltzmann’s constant kB is taken as 1. The sums are over the eigenstates

labelled by subscript j .
The quantities to be calculated as a function of temperature T are:

(1) The zero-field magnetic susceptibility:

χ = β

∑
j m2

j e
−βE j

Z0
. (2)

(2) The specific heat:

Cv = β2 (Z2 Z0 − Z 2
1)

Z 2
0

. (3)

(3) The partition function:

Z ≡ Z0. (4)

For the susceptibility of the three spin- 1
2 chain we obtain

χT

N
= x−2 + 1 + 10x

12(x−2 + 1 + 2x)

where x = e−β/2. The high-temperature expansion of this is

χT

N
= 1

4
− 1

12
β − 1

96
β2 +

1

144
β3 +

7

2304
β4 − 17

46 080
β5 − 617

1105 920
β6

− 253

3870 720
β7 +

4576

61 931 520
β8 +

29549

1114 767 360
β9 + · · · .

The power series in the ferromagnetic case with J = −1 is identical except that all odd powers
of β have the sign of the coefficient reversed. The numerical results in this paper are presented
for the antiferromagnetic case with J = 1 and figures are given both for this and for the
ferromagnetic case with J = −1.

For the specific heat we have

Cv/N = (−x−2 + x)

(x−2 + 1 + 2x)
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with high-temperature expansion

= 1
8β2 + 1

16β3 − 3
128 β4 − 5

192 β5 − 1
768β6 + 119

20 480β7 + 2629
1474 560β8 − 401

516 096β9 + · · ·
and for the partition function

Z/N = 2(x−2 + 1 + 2x)/3

with high-temperature expansion

= 8
3 + 1

2β2 + 1
12β3 + 1

32β4 + 1
192β5 + 11

11 520β6 + 1
7680β7 + 43

2580 480β8 + 17
9289 728β9 + · · · .

In subsequent sections these results are extended to larger N and S.

2. Zero-field magnetic susceptibility

The Hamiltonian for general N is

H = J
N−1∑

k=1

sk · sk+1. (5)

For values of N > 3 and/or for S > 1/2 the eigenvalues were obtained numerically, and the
series calculated from these with the coefficients in the form of decimal numbers. Nevertheless,
it is normally possible to identify the coefficients in rational form and this is necessary in order
to obtain exact results for the general form of the coefficients. The rational numbers obtained
when both N and β are large have very large numerators and denominators. They are believed
to be correct for all values and agree with exact results where known. Also, the bulk results
derived from them below are in agreement with known values [8]. Nevertheless, conversion
of decimal numbers to rational numbers always admits the possibility of error.

Let ci(N) be the coefficient of β i in the high-temperature series expansion of χT/N ,
where χ is the zero-field magnetic susceptibility for a chain of length N . We show in the table
the S = 1/2 coefficients for i � 5 and 3 � N � 9, although in fact they have been calculated
for N up to 14 and for i up to 9. c0 is not shown since it is always 1/4.

N c1 c2 c3 c4 c5

3 − 1
12 − 1

96
1

144
7

2304 − 17
46 080

4 − 3
32 − 1

128
1

128
1

2304 − 101
122 880

5 − 1
10 − 1

160
1

120
7

384 − 1
1200

6 − 5
48 − 1

192
5

576
7

2560 − 17
18 432

7 − 3
28 − 1

224
1

112
13

4608 − 53
53 760

8 − 7
64 − 1

256
7

768
31

10 752 − 127
122 880

9 − 8
72 − 1

288
1

108
3

1024 − 37
3840

N − (N−1)

8N − 1
32N

(N−1)

96N
(5N−4)

1536N − (21N−41)

15 360N

The last line of the table gives the form for general N . For i > 5 the general form obtained
is

c6 = − (399N − 664)

128 × 5!N
c7 = (320N − 1461)

1024 × 6!N

c8 = (11 421N − 25 778)

1024 × 8!N
c9 = (74 740N − 126 454)

4096 × 9!N
.
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Table 1. Table of coefficients in the high-T expansion of χT/N .

S = 1/2 S = 1

χb χs χb χs

c0
1

22
0

2

3
0

c1 − 1

23

1

23
− 8

32

8

32

c2 ∗ 2! 0 − 1

24

20

33
− 52

33

c3 ∗ 3!
1

24
− 1

24

32

33

16

32

c4 ∗ 4!
5

26
− 1

24
− 260

34

244

34

c5 ∗ 5! − 21

27

41

27
− 4896

35

1616

35

c6 ∗ 6! − 399

29

83

26

11 324

35
− 3188

34

c7 ∗ 7!
320

210
− 1461

210

67 240

34
− 237 112

35

c8 ∗ 8!
11 421

210
− 12 889

29
− 600 964

36

123 356

37

c9 ∗ 9!
74 740

212
− 63 227

211
— —

It is important to note, as can easily be checked, that the general form of ci(N) is valid only
for i � N . This is also true for the values not shown.

It can now be seen that the general form of the coefficients consists of two parts, and we
can write

ci (N) = bi + si/N

where bi and si are constants independent of N . Since the series is for χT/N the first term
is a ‘bulk’ term giving a contribution to χ of order N , while the second term is a ‘surface’
or ‘edge’ term whose contribution to χ does not change with increasing N . Thus it can be
concluded that the total susceptibility of a chain of length N consists of three parts:

χ = Nχb + χs + χcorr

where all three terms are functions of T : χb and χs are independent of N and χcorr is a correction
term of order (β)N+1. The coefficients of the powers of β are given in table 1 for χb and χs.

The results are shown in figure 1 for the bulk susceptibility per spin and the surface
susceptibility for both antiferromagnetic and ferromagnetic chains. These are calculated using
the high-temperature expansions up to seventh, eighth and ninth powers of β and also simple
4/4 Padé approximants. The bulk results are of course the same as the exact results, known
very accurately from the Bethe ansatz method, and these are also shown, taken from Eggert
et al [5] and Klümper [6]. The power series are clearly well converged for T > 1 and the Padé
approximant is accurate for T � 0.6.

The main feature of the result is that the surface susceptibility of the antiferromagnetic
chain is the same sign as that of the bulk, whereas for the ferromagnetic chain the surface
susceptibility is negative. These remarks apply to the temperature range where the series is
clearly converged, i.e. not at low temperatures, although it seems quite probable that they
would apply there also.
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Figure 1. Bulk zero-field susceptibility per spin (top) and surface zero-field susceptibility (bottom)
for open S = 1/2 chains. Antiferromagnetic (left) and ferromagnetic (right).

The surface susceptibility in the antiferromagnetic case rises more sharply than the bulk
as T → 0. Also the Padé approximant curve has a clear maximum, unlike the bulk case in
which it diverges. There are not sufficient terms available to determine the low-temperature
behaviour with any certainty but one might speculate that the Padé curves at this level of
approximation which have a maximum may correspond to susceptibility which tends to 0 as
T → 0 while those which diverge may correspond to susceptibility which tends to a non-zero
value. A plot of χs × T for the antiferromagnet shows evidence of a peak at T ≈ 0.6.

Spin-1 has also been investigated. Only chains up to N = 9 have been fully diagonalized.
Nevertheless it is again possible to identify the first few terms in the series for both bulk and
surface susceptibilities. These are also given in table 1. For the bulk susceptibility the 4/4
Padé approximants results are similar to the spin- 1

2 case for both the antiferromagnetic and
ferromagnetic chains, although with the curves shifted to higher temperatures. The same is
true for the surface susceptibility in the ferromagnetic case, but for the antiferromagnet the
Padé result diverges for S = 1, instead passing through a maximum as in the S = 1

2 case. The
results are shown in the appendix.

3. Specific heat

The specific heat is given by equation (3) and is calculated in essentially the same way as the
susceptibility. The results for the S = 1

2 and 1 antiferromagnetic chains are

Cv = NCb + Cs + Ccorr

where all three terms are functions of T : Cb and Cs are independent of N and Ccorr is a
correction term of order (β)N+1. Each of Cb and Cs is obtained as a power series in β with
coefficients given in table 2. For both S = 1

2 and 1 the coefficients given are valid for all N
except that c8 and c9 are valid only for N � 4. The resulting curves are shown in figure 2.



S5238 J B Parkinson

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T

T T

Up to (1/T)^7

Up to (1/T)^8

Up to (1/T)^9

Exact (Klumper)

Pade
Cv/NCv/N

Up to (1/T)^7

Up to (1/T)^8

Up to (1/T)^9

Exact (Klumper)

Pade

Up to (1/T)^7

Up to (1/T)^8

Up to (1/T)^9

Pade

.

CvCv
Up to (1/T)^7

Up to (1/T)^8

Up to (1/T)^9

Pade

0

0.1

0.2

0.3

0.4

0.5

-0.25

-0.2

-0.15

-0.1

-0.05

0
0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Figure 2. Bulk specific heat per spin (top) and surface specific heat (bottom) for open S = 1/2
chains. Antiferromagnetic (left) and ferromagnetic (right).

Table 2. Table of coefficients in the high-T expansion of Cv/N .

S = 1/2 S = 1

Cb Cs Cb Cs

c0 0 0 0 0
c1 0 0 0 0

c2
3

24
− 3

24

4

3
− 4

3

c3
3

25
− 3

25

2

3
− 2

3

c4 ∗ 2! − 15

27

27

27
− 40

32

56

32

c5 ∗ 3! − 45

27

75

27
− 10

3

130

33

c6 ∗ 4!
63

29
− 237

29

616

33

368

32

c7 ∗ 5!
2751

210
− 6111

210

1603

32
− 8729

33

c8 ∗ 6!
12 753

212
− 20 853

212
− 186 392

34

134 024

33

c9 ∗ 7! − 64 545

211

178 107

211
− 312 745

33

2007 507

34

Here the main feature is that the surface contribution to the specific heat is negative over
the converged range for both the antiferromagnet and the ferromagnet. This can be understood
in terms of the density of energy states for surface states being lower than for bulk states owing
to the ‘looser coupling’ of the surface atoms which have only one neighbour.
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Table 3. Table of partition function polynomials for S = 1
2 .

i fi

0 1
1 −(N + 1)

2 N2 + 5N − 2
3 −(N3 + 12N2 + 9N − 14)

4 N4 + 22N + 75N2 − 98N + 40
5 −(N5 + 35N4 + 265N3 − 35N2 − 850N + 1096)

6 N6 + 51N5 + 675N4 + 1385N3 − 6420N2 + 5940N + 1360
7 —
8 —

The first few terms for the S = 1 series for the specific heat are also given in table 2.
Again the main features are the same as for S = 1

2 . The results are shown in the appendix.

4. Partition function

The partition function equation (4) is again calculated in the same way. However, the results
have a different form. Since Z is not a directly measurable (physical) quantity we might not
expect the result to consist of a bulk, a surface and a correction term as for the susceptibility
and the specific heat. The result is as follows. For a spin- 1

2 antiferromagnetic chain of length
N

Z =
∞∑

i=0

ciβ
i (6)

where

ci = 2N−2i

Ni !
fi (N)

where fi (N) is a polynomial of degree i in N . The form of the fi is given in table 3.
However, it is remarkable that these coefficients are valid for all N � 3, i.e. there is no

correction of order β i .

5. Conclusion

The main conclusion to be drawn is that there is clear evidence of well-defined surface effects
in quantum spin chains with open ends. These become exact for infinite length chains but

have corrections of order 1
T

k
where k → ∞ as the length N → ∞. The relation between k

and N depends on the spin length S and also on whether one considers the susceptibility or
the specific heat. Because the terms in the high-temperature series expansion are calculated
in this paper using a method which depends on full diagonalization of the Hamiltonian, only
chains with N � 14 for S = 1

2 and N � 9 for S = 1 were considered. The resulting series
are somewhat limited and cannot be used for very low temperatures.

Nevertheless it is interesting to speculate whether the methods which have been used for
the integrable S = 1

2 chains with periodic boundary conditions might possibly be useful in
determining these surface functions, at least for S = 1

2 .
Physically the most noticeable effects are the enhancement of the susceptibility of the

antiferromagnetic chain and the decrease for the ferromagnetic chain. For the specific heat the
surface term gives a decrease in both cases.
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Figure A.1. Bulk zero-field susceptibility per spin (top) and surface zero-field susceptibility
(bottom) for open S = 1 chains. Antiferromagnetic (left) and ferromagnetic (right).
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Figure A.2. Bulk specific heat per spin (top) and surface specific heat (bottom) for open S = 1
chains. Antiferromagnetic (left) and ferromagnetic (right).

The results for the partition function for S = 1
2 do not have any direct consequence

for physical measurements, but are perhaps interesting because of the way they give exact
information about finite as well as infinite N .
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Appendix

Figures A.1 and A.2 show the results for the susceptibility and the specific heat for S = 1.
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